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What is Post-modeling?

Deep analysis on a subset of models that best fit the project’s goals —efficiency,
effectiveness, equity—

Why
® We need to select “the best” model to deploy with the best possible
outcomes for the people it will affect/serve

® This analysis will generate information about the entities the different models
in the subset highlight/flag/identify

[ Modeling ] [ Post-modeling ]
| Performance | Entities flagged by the
Bias and Fairness model
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Types of analysis in Post-modeling

34 0.765 0 N . Entities with highest likelihood
Top k 102 0.653 0 of... according to the model
765 0.632 1
>~ Cohort
7 0.517 1
) Entities with lowest likelihood
45 0.039 0 _ of... according to the model

K organization’s capacity to do the intervention
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Post-modeling analysis (top Kk entities)

Type of analysis What information we get Comparison level

Crosstabs Differences in feature values between top K selected by model and the rest of the entities. Single model
Between models

Overlaps Which entities are highlighted on different models Between models
List characteristics Descriptives (demographics and others) Single model
Which entities are included Between models

Which entities are left behind

Events and outcomes On label window, Single model
After label window Between models
Error analysis Which features are associated with FPs, FNs Single model

Between models

Performance Performance of the models (Precision, Recall, etc.) Single model
Between models

Feature importances Which features add more information to the model Between models

Bias and Fairness Group disparities at attributes of interest Between models
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Use case: Reducing the impact of Behavioral Health Crises in Douglas

and Johnson Counties, Kansas.
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Outreach resources People selected for
are only allocated outreach are

to people at-risk of positively impacted
an event by the intervention
Efficient use of Reduced risk of
intervention adverse event
resources

Equity

Individuals from
high need groups
are not left out
disproportionately

Fair and equitable
distribution of
services
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Analytical formulation - Matching the operational setup

How often? On the 1%t of every month, for all individuals

oo who have interacted with MyRC source
agencies in the last 1 year, can we identify

How many? the 100 individuals who are at highest risk of

What outcome are you having a very high-acuity® event in the next

predicting? 6 months to recommend for proactive

For what purpose? behavioral health outreach?

*Death by suicide or overdose, suicide atttempts, suicidal gestures, diagnoses, and ambulance runs, overdose ambulance runs, severe substance use,
and homicidal intentions or actions.
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Current model (ML) Client Risk Scorecard
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Information gathered with Post-modeling analysis

Demographics (TPs): ° Avg age of 38 ° Avg age of 31
° Same distribution in gender, 49% female ° Same distribution in gender, 49% female
° More in “Other” race than Scorecard ° More in “Black” race than Current model
Events from past More events from all types and both acuities Less events from all types and both acuities
Events on label window More events from all types and both acuities Less events from all types and both acuities
Events after label window More events from all types and both acuities, including Less events from all types and both acuities, also
deaths found deaths
Crosstabs People at the top have more frequent and higher acuity People at the top have more flags on for events
events considered of high risk
Overlaps ° 0% if only TPs

° Avg of 11% in top 100

Performance Better in precision and recall —efficiency, effectiveness— Less precision and recall

Bias and fairness Less bias on both attributes of interest (Fair for race) Unfair for race and gender
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Post-modeling - Performance

Mean Performance based on Precision@ Mean Performance based on Recall@
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Crosstabs (last time split 2023-07-01)

Current model

Scorecard

1308 times more likely to have
ambulance runs related to
homelessness in the last month
1308 fold increase in number of
ambulance runs related to
homelessness in the last month
760 fold increase in # of crisis calls
(JCMHC) in the last 6 months

754 fold increase in # of crisis calls
(JCMHC) in the last month

739 fold increase in # of ambulance
runs related to suicide

311 times more likely to have high
risk of substance use

229 times more likely to be flagged
as High risk of harm to others

179 times more likely to be flagged
as High risk of suicide

145 times more likely to be flagged
as High risk of hospitalization

88 times more likely to be flagged
as High risk of self harm
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Overlaps between Scorecard and Current model

. ) _ Mean overlaps by rank range (Current Model vs Scorecard)
Individuals flagged in ML model and Scorecard (Simple threshold)
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Overlaps (TPs) between Scorecard (simple threshold) and Current Model

TPs in ML model and Scorecard (Simple threshold) Mean overlaps by rank range (Current Model vs Scorecard)
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Flagged by current model missed by Scorecard

Prediction date
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Model comparisons - Demographics = Age
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Model comparisons - Type of events

Flagged by current model missed by Scorecard
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Model comparisons - Acuity of events

Flagged by current model missed by Scorecard Flagged by Scorecard missed by Current model
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Bias and Fairness: Recall disparity

Gender Race
Protected = Female | Reference = Male Protected = Black | Reference = White
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To sum up

Post-modeling happens once you have a subset of models selected based on performance
You use the post-modeling analysis to identify and select the model that will be validated
with a field trial

Post-modeling gives information about the entities highlighted by the model of having the
highest likelihood of having/experiencing the outcome

Post-modeling analysis includes several types of analysis mainly to characterize the entities
in your top k lists

Responsible Al isn’t just about explainability or bias metrics—it’s about recognizing who our
models serve and who they overlook. Our technical decisions have real-world
consequences, affecting individual lives. As analysts/scientists, we must be thorough!
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