Data Science For Social Good Carnegie Mellon University

On Responsible AI/ML/DS, Post-modeling

June 2025

Carnegie Mellon University

What is Post-modeling?

Deep analysis on a subset of models that best fit the project's goals –efficiency, effectiveness, equity–

Why

- We need to select "the best" model to deploy with the best possible outcomes for the people it will affect/serve
- This analysis will generate information <u>about the entities</u> the different models in the subset highlight/flag/identify

Types of analysis in Post-modeling

k organization's capacity to do the intervention

Post-modeling analysis (top k entities)

Type of analysis	What information we get	Comparison level
Crosstabs	Differences in feature values between top k selected by model and the rest of the entities.	Single model Between models
Overlaps	Which entities are highlighted on different models	Between models
List characteristics	Descriptives (demographics and others) Which entities are included Which entities are left behind	Single model Between models
Events and outcomes	On label window, After label window	Single model Between models
Error analysis	Which features are associated with FPs, FNs	Single model Between models
Performance	Performance of the models (Precision, Recall, etc.)	Single model Between models
Feature importances	Which features add more information to the model	Between models
Bias and Fairness	Group disparities at attributes of interest	Between models

Use case: Reducing the impact of Behavioral Health Crises in Douglas and Johnson Counties, Kansas.

Goals

Efficiency

Outreach resources are only allocated to people at-risk of an event

Efficient use of intervention resources

Effectiveness

People selected for outreach are positively impacted by the intervention

Reduced risk of adverse event

Equity

Individuals from high need groups are not left out disproportionately

Fair and equitable distribution of services

Analytical formulation - Matching the operational setup

How often?

Who?

How many?

What outcome are you predicting?

For what purpose?

On the 1st of every month, for all individuals who have interacted with MyRC source agencies in the last 1 year, can we identify the 100 individuals who are at highest risk of having a very high-acuity* event in the next 6 months to recommend for proactive behavioral health outreach?

^{*}Death by suicide or overdose, suicide atttempts, suicidal gestures, diagnoses, and ambulance runs, overdose ambulance runs, severe substance use, and homicidal intentions or actions.

Current model (ML)

1

Client Risk Scorecard

Information gathered with Post-modeling analysis

Post-modeling analysis	Current model	Scorecard
Demographics (TPs):	 Avg age of 38 Same distribution in gender, 49% female More in "Other" race than Scorecard 	 Avg age of 31 Same distribution in gender, 49% female More in "Black" race than Current model
Events from past	More events from all types and both acuities	Less events from all types and both acuities
Events on label window	More events from all types and both acuities	Less events from all types and both acuities
Events after label window	More events from all types and both acuities, including deaths	Less events from all types and both acuities, also found deaths
Crosstabs	People at the top have more frequent and higher acuity events	People at the top have more flags on for events considered of high risk
Overlaps	 0% if only TPs Avg of 11% in top 100 	
Performance	Better in precision and recall –efficiency, effectiveness–	Less precision and recall
Bias and fairness	Less bias on both attributes of interest (Fair for race)	Unfair for race and gender

Post-modeling - Performance

Crosstabs (last time split 2023-07-01)

Current model

- 1308 times more likely to have ambulance runs related to homelessness in the last month
- 1308 fold increase in number of ambulance runs related to homelessness in the last month
- 760 fold increase in # of crisis calls (JCMHC) in the last 6 months
- 754 fold increase in # of crisis calls (JCMHC) in the last month
- **739** fold increase in # of ambulance runs related to suicide

Scorecard

- **311** times more likely to have high risk of substance use
- 229 times more likely to be flagged as High risk of harm to others
- **179** times more likely to be flagged as High risk of suicide
- 145 times more likely to be flagged as High risk of hospitalization
- 88 times more likely to be flagged as High risk of self harm

Overlaps between Scorecard and Current model

Overlaps (TPs) between Scorecard (simple threshold) and Current Model

Model comparisons - Demographics ⇒ Age

Flagged by current model missed by Scorecard

2017-07-01 2018-01-01 2018-07-01 2019-01-01 2019-07-01 2020-01-01 2020-07-01 2021-01-01 2021-07-01 2022-01-01 2022-07-01 2023-01-01 2023-07-01 10 20 30 50 60 age

Mean: 38 years

Flagged by Scorecard missed by Current model

Mean: 31 years

Model comparisons - Type of events

Flagged by current model missed by Scorecard

Flagged by Scorecard missed by Current model

Model comparisons - Acuity of events

Flagged by current model missed by Scorecard

Flagged by Scorecard missed by Current model

Bias and Fairness: Recall disparity

Race Protected ⇒ Black | Reference ⇒ White

- New Model (all features)
- Current Model (RF)
- Scorecard (Simple Threshold)

To sum up

- Post-modeling happens once you have a subset of models selected based on performance
- You use the post-modeling analysis to identify and select the model that will be validated with a field trial
- Post-modeling gives information about the entities highlighted by the model of having the highest likelihood of having/experiencing the outcome
- Post-modeling analysis includes several types of analysis mainly to characterize the entities in your top k lists

Responsible AI isn't just about explainability or bias metrics—it's about recognizing who our models serve and who they overlook. Our technical decisions have real-world consequences, affecting **individual lives**. As analysts/scientists, we **must be thorough!**