
Power your data orchestration
with Apache Airflow® 3

Agenda

- Background - 30 min
- Airflow 3 feature overview

- Hands-on exercises - 45 min
- Run Airflow 3 locally
- Explore the new UI
- Write a DAG with assets
- Use backfills and DAG versioning

- Q&A  15 min

Prerequisites

To complete the hands-on exercises you will
need:

- A GitHub account
- The Astro CLI

- bit.ly/astro-cli

Airflow is the
open source
standard for
Workflow
Management

30M+
Monthly downloads

1500+
Building blocks

57k+
Slack community

3k+
Contributors

Airflow
contributor
growth

Github Contributors Over
Time

Key Airflow milestones

2.1  2.10

Apache
Top Level
Project

Efficiency & Ease of Use
Async Operators
Dynamic Tasks
Setup & Tear-down
Airflow ObjectStore

Data Awareness
Data-aware scheduling
Conditional scheduling
Combined dataset + time
scheduling
Dataset Event API

0.1

Creation
Airflow Started

2.0

Enterprise
Production-Ready
HA Schedulers
Fully specified REST API
TaskFlow API

1.0

2014 2019 2020 2021  2024 202420252015

1.10.2

Easier to Use
DAG Versioning
UI modernization
Backfills at Scale

Better Security

Run anywhere, at any
time

3.0

Airflow survey results

DAG Versioning always #1
on the wish list!

More:
● Security
● Execution / invocation
● Datasets
● Observability / Governance

What features would you like to see in Airflow?

Airflow 3.0 is the biggest release since 2020

Three key themes

Easier to use

Stronger Security

Run [tasks] anywhere, at any time

Airflow 3.0 is the biggest release since 2020

Three key themes

Easier to use

Stronger Security

Run [tasks] anywhere, at any time

Improve the UX by making Airflow easier to use

Backfills at Scale
Run backfills easily from the UI, API, or CLI

UI Modernization
React-based UI with easier navigation

DAG Versioning
View historical versions of DAGs and all their run information

Improve the UX by making Airflow easier to use

Backfills at Scale
Run backfills easily from the UI, API, or CLI

UI Modernization
React-based UI with easier navigation

DAG Versioning
View historical versions of DAGs and all their run information

DAG versioning
in Airflow 2.X

❌ Airflow assumes the most recent DAG code

applies to all past runs

❌ Code updates during a run can cause tasks to

execute different code versions

❌ DAG changes overwrite history, making past

executions hard to trace

Went from 2 to 3 tasks

Reduce back to 2 tasks

Completely different tasks

DAG
versioning in
Airflow 3.X

The #1 requested community feature is now
delivered!

Improve the UX by making Airflow easier to use

Backfills at Scale
Run backfills easily from the UI, API, or CLI

UI Modernization
React-based UI with easier navigation

DAG Versioning
View historical versions of DAGs and all their run information

Backfills in
Airflow 2.X

➡ Airflow backfills can only run via the CLI

❌ Cannot trigger backfill via API/UI

➡ CLI backfill acts as a second scheduler

❌ Scheduling logic for backfill and normal runs

differs

➡ If the CLI process dies, the backfill job dies

❌ Cannot observe progress, track status, or cancel

Backfills in
Airflow 3.0

✅ Trigger backfills from UI, API, or CLI

✅ API support to trigger async backfills

✅ UI support to view progress and track status

✅ Backfills coordinated via the scheduler

Airflow 3.0 is the biggest release since 2020

Three key themes

Easier to use

Stronger Security

Run [tasks] anywhere, at any time

Airflow 3.0
introduces an
architectural
change for task
isolation

Airflow 3.0 is the biggest release since 2020

Three key themes

Easier to use

Stronger Security

Run [tasks] anywhere, at any time

Run anywhere builds on the foundation of
task isolation in Airflow 3.0

Remote / Edge execution: run tasks on
workers in remote clusters

Benefits
● Deployment flexibility with workers on

public, hybrid, private cloud, on-prem,
edge, GPU clouds

● Higher resilience and scalability

● Improved security isolation

● Easier upgrades, fewer dependencies

● Better meet data locality mandates

Main k8s cluster

Airflow runtime components

UI Scheduler WorkerWorkerWorkers

Remote clusters, with local workers

Cloud Data Sources

WorkerWorker Workers

Enterprise Data Center

WorkerWorker Workers

Run at any time, Airflow 3.0 supports
Scheduled (Batch), Event-Driven, and
Adhoc Execution

● Event-driven scheduling: Run DAGs in a push or
pull architecture based on updates to an external
system. Built on top of data assets. SQS supported

● Inference Execution: Simultaneous execution of
the same DAG. Asset

Collection of logically related data:
i.e., tables, files, models,

dashboards

What is an Asset ?

● An Asset is a collection of logically related data
○ The next evolution of datasets

● Assets can have a name, a URI, a group, and extra information. They are

mainly identified by their name in the UI right now.

● An asset event is an event that is attached to an asset and created

whenever that asset is updated

● Assets can have a Watcher for event-driven scheduling (only SQS right

now)

How do you define/interact with an Asset?

● Outlets: Specify which assets a task produces or updates. They appear
in the DAG graph and Assets tab UI as soon as the DAG is
parsed—regardless of task execution.

● Inlets: Indicate which assets a task depends on or reads from. This
gives the task access to all asset events for that asset
○ Note this DOES NOT affect the DAGʼs schedule

● @asset: a decorator that can be used to create one DAG with one task
that produces an asset, by directly declaring the desired asset in Python
with less boilerplate code
○ “Asset-orientedˮ approach to DAG writing, vs “task-orientedˮ

The Basics

Generating an
Asset Event

There are several ways to update an asset:

● A DAG defined using @asset completes successfully. Under the hood,
@asset creates a DAG with one task which produces the asset.

● A task with an outlet parameter that references the asset completes
successfully.

● A POST request to the assets endpoint of the Airflow REST API.

● An AssetWatcher that listens for a TriggerEvent caused by a message in
a message queue. See event-driven scheduling for more information.

● A manual update in the Airflow UI by using the Create Asset Event button
on the asset graph. Two options here:

○ Materialize: runs the full DAG that contains the task that produces
the asset event

○ Manual: creates a new asset event without running any task. Useful
for testing

https://airflow.apache.org/docs/apache-airflow/stable/stable-rest-api-ref.html#tag/Dataset
https://www.astronomer.io/docs/learn/airflow-event-driven-scheduling

Hands-on
exercises

Instructions

● You will need:
○ A GitHub account
○ The Astro CLI - bit.ly/astro-cli

■ (If you can’t install the CLI, you can use GH codespaces. If using
codespaces, choose 4 cores instead of the default 2 when setting it
up.)

● Fork the repo here: bit.ly/af3-workshop
○ Make sure you uncheck “fork the main branch only”
○ Instructions are in the Readme
○ Pick the airflow-3-0 branch

What you will build

ETL pipeline
with Assets
3 separate
DAGs)

GenAI
pipeline 1
DAG

Start Your
14Day
Free Trial of
Astro

Run Airflow in 5 minutes
A simple platform and a suite of developer tools
empower
your team to quickly develop, test, and deploy
pipelines.

Manage data pipelines like a pro
Extend your capabilities beyond Airflow to easily
and reliably build data pipelines, manage
workflows, and optimize operations.

Scale data operations to success
Enterprise-grade security, 24/7 support from
in-house experts and top committers, and
end-to-end observability allow you to grow with
confidence.

Q&A

